Pametna kuća sa Arduino platformom

Javorski, Matej

Undergraduate thesis / Završni rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Polytechnic of Međimurje in Čakovec / Međimursko veleučilište u Čakovcu

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:110:170274

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-10-01

Repository / Repozitorij:

Polytechnic of Međimurje in Čakovec Repository - Polytechnic of Međimurje Undergraduate and Graduate Theses Repository
MEĐIMURSKO VELEUČILIŠTE U ČAKOVCU

STRUČNI STUDIJ RAČUNARSTVA

MATEJ JAVORSKI

PAMETNA KUĆA S ARDUINO PLATFORMOM

SMART HOUSE WITH ARDUINO PLATFORM

ZAVRŠNI RAD

Mentor:

Jurica Trstenjak, dipl. ing.

ČAKOVEC, 2018.
Sažetak

U ovom radu opisana je izrada i funkcionalnost pametne kuće s Arduino platformom te komponente koje će se koristiti pri izradi i realizaciji rada. Sve korištene komponente povezane su na maketi pametne kuće. Rad je zamišljen tako da se preko mobitela/web-stranice upravlja Arduino uređajem koji upravlja kamerom, senzorom za temperaturu, servomotorima i rasvjetom.

U prvom dijelu rada opisani su cilj i namjena izrade makete i njezinih funkcionalnih dijelova. Dalje su nabrojani i opisani svi dijelovi potrebni za izradu, njihova namjena, način funkcioniranja i karakteristike. Za ostvarivanje funkcionalnosti korištena je Arduino platforma za kreiranje elektroničkih prototipova na koju su spojeni servomotori potrebni za otvaranje/zatvaranje vrata i prozora, temperaturni senzor za očitavanje temperature i LED diode za paljenje i gašenje svjetla na maketi kuće. U svrhu upravljanja maketom korišten je Orange Pi Zero koji preko usmjerivača omogućava korisnički pristup navedenim funkcijama preko korisničkoga sučelja.

Nakon definiranja komponenata opisani su načini njihova spajanja i komuniciranja popraćeni shemama i slikama spojeva te programskim kodom. Za svaku od cjelina napravljena su testiranja kako bi se utvrdilo pravilno funkcioniranje čitave strukture. Prigodom izrade rada trebalo je ujediniti znanje iz područja elektrotehnike, digitalnih elektroničkih sklopova i programiranja u jednu cjelinu spojenu na maketi pametne kuće.

Na kraju ovoga rada prikazan je funkcionalan završni proizvod na kojem je korisniku omogućeno intuitivno upravljanje spojenim komponentama preko web-stranice ili mobitela. Pomoću ovog projekta prikazani su način i svrha automatizacije kuća koje su sve traženje na tržištu zbog modernizacije i lakšeg upravljanja tehnologijom u svakodnevnom životu.

U završnom radu koristit će se Arduino Mega, temperaturni senzor TMP36, Orange Pi Zero, servomotori JX servo PDI-9180MG, web-kamera Sweex WC070 i LED diode.

Ključne riječi: Arduino Mega, temperaturni senzor TMP36, Orange Pi Zero, servomotori JX servo PDI-9180MG, web-kamera Sweex WC070, LED diode, maketa.
Sadržaj
1. Uvod ... 3
2. Cilj rada ... 4
3. Komponente i materijali .. 5
 3.1. Arduino platforma ... 5
 3.1.1. Arduino Mega 2560 ... 6
 3.1.2. Arduino razvojno okruženje ... 7
 3.2. Orange Pi Zero ... 8
 3.3. Senzori .. 11
 3.3.1. Temperaturni senzor TMP36 ... 12
 3.4. Servomotori ... 12
 3.4.1. Servomotor JX Servo PDI-918MG ... 14
 3.5. Web-kamera ... 15
 3.5.1. Sweex WC070 web-kamera ... 15
 3.6. LED diode .. 16
 3.7. Maketa .. 16
4. Spajanje i komunikacija komponenata .. 18
 4.1. Spajanje komponenti s Arduino platformom .. 18
 4.1.1. Arduino Mega 2560 i TMP36 ... 18
 4.1.2. Arduino Mega 2560 i JX Servo PDI-918MG ... 19
 4.1.3. Arduino Mega 2560 i LED diode ... 20
 4.1.4. Programski kod ... 21
 4.1.5. Testiranje rada komponenti ... 24
 4.2. Spajanje Arduino platforme i Orange Pi Zero ... 26
 4.2.1. Konfiguracija Orange Pi Zero ... 26
 4.2.2. Node.js server ... 28
 4.3. Web-aplikacija .. 31
5. Rezultati rada .. 35
6. Zaključak ... 38
7. Popis literature: ... 39
8. Popis slika .. 40
1. Uvod

Pametna kuća koristi sustav kućne automatike koji podrazumijeva integraciju električnih uređaja u sustav kojim korisnik može sam upravljati. Zbog svakodnevnog napretka tehnologije dolazi do velike potražnje za poboljšanjem kvalitete života olakšavanjem svakodnevnih zadaća i povećanjem raznih mjera sigurnosti. Pametna kuća zadovoljava upravo te kriterije, njome se može omogućiti integracija zaštitnoga sustava, potpuna kontrola nad rasvjetom, upravljanje videosustavima i audiosustavima, upravljanje grijanjem, hlađenjem i ostalim uređajima.

U ovome radu za model pametne kuće korištena je Arduino\(^1\) platforma. Ona se bazira na fleksibilnom sklopovlju zahtijevajući kojem možemo povezati Arduino s drugim uređajima i sklopovima čime se proširuje sama funkcionalnost. Kako bi se omogućila cjelokupna funkcionalnost koja se može zahtijevati od jedne pametne kuće, Arduino može zahtijevati pristup internetu preko komunikacije s drugim platformama, uređajima i računalima.

\(^1\) Arduino - električka platforma za kreiranje električkih prototipova bazirana na sklopovlju i programskom paketu
2. Cilj rada

Cilj je ovoga rada prikazati što su pametne kuće, na koje se načine mogu koristiti i kako jedan takav sustav funkcionira. U tu svrhu izrađuje se maketa pametne kuće s Arduino platformom koja preko web-aplikacije upravlja rasvjetom, servomotorima koji spuštaju/podižu rolete, otvaraju i zatvaraju vrata te sa senzorom temperature i kamerom. Za web-aplikaciju koristi se i Orange Pi Zero\(^2\) spojen na Arduino platformu. Na taj će se način omogućiti pokretanje stranice na lokalnoj adresi na kojoj korisnici mogu upravljati navedenim značajkama.

\(^2\) Orange Pi Zero – minijaturno računalo otvorenoga koda sadržano na jednoj kontrolnoj pločici
3. Komponente i materijali

Za izradu ovoga završnog rada koristit će se Arduino Mega platforma, Orange PI zero, web-kamera, servomotori i LED žaruljice. Navedene komponente postavljene su na maketu kućice kako bi se vidjele i testirale funkcije sustava.

3.1. Arduino platforma

Arduino je elektronička platforma za kreiranje elektroničkih prototipova bazirana na sklopovlju i programskom paketu koji je fleksibilan i jednostavan za korištenje. Budući da je otvorenoga tipa (engl. open source), dozvoljeno je njezino dijeljenje i preuređivanje u svrhu kreiranja novih platformi. Prednost joj je mogućnost rada sa svim operativnim sustavima kao što su Windows, Macintosh OSX i Linux.

Arduino je kreiran u Ivrea Interaction Design Institutu kao alat za brzo stvaranje prototipova usmjerenih prema studentima elektroničke i programerske struke. Zahvaljujući brzom rastu i širenju potražnje započele su prilagodbe proizvoda opširnijim potrebama i izazovima. Tako se korištenje Arduino pločice proširilo na aplikacije s bežičnim spajanjem na internet (engl. IoT applications), na pametne satove i na 3D printanje.

Srce su Arduina mikrokontroleri. Mikrokontroler je elektronički uređaj sličan računalu sadržan u jednom integriranom sklopu u obliku čipa. Za razliku od računala opće namjene mikrokontroleri se koriste za specifične zadaće kontroliranja elektronskih uređaja. Ulazi (engl. input) i izlazi (engl. output) mogu biti analogne i digitalne prirode. Analogni izlazi mogu biti naponski ili strujni te služe za obavljanje željenih radnji preko elektromehaničkih sklopoa, poput promjene položaja nekoga predmeta, povećanja brzine motora i sličnoga.

Sve Arduino platforme sastoje se od mikrokontrolera, integriranog sklopa za komunikaciju s računalom te perifernih elektroničkih dijelova. Arduino pločice uzimaju ulazne podatke kao što su svjetlo na senzoru ili pritisak na gumb i pretvaraju ih u izlazne radnje kao što je aktiviranje motora ili paljenje LED žaruljice. Spomenute funkcije postižu se preko Arduinova razvojnog okruženja i programskoga koda. Najpoznatija je
inačica Arduino platforme Arduino Uno razvojna pločica (u ovom završnom radu koristi se unaprijeđena, brža verzija Arduino Mega 2560).

3.1.1. Arduino Mega 2560

Arduino Mega 2560 razvojna je pločica bazirana na ATmega2560 8-bitnom mikrokontroleru. Proizvod je dizajniran za projekte koji zahtijevaju više linija za ulazno-izlazne operacije i RAM memorije. Zahvaljujući brojnim nadogradnjama ova razvojna pločica idealna je za korištenje kod 3D printera i kod robotike pružajući mnogo prostora i mogućnosti za projekte. Može se koristiti kod samostojecih interaktivnih projekata ili se povezati na programe na računalu.

Slika 1. Arduino Mega 2560 razvojna pločica

IZVOR: https://store.arduino.cc/usa/arduino-mega-2560-rev3 (10.6.2018.)

Arduino Mega 2560 sadrži 54 digitalnih ulazno-izlaznih pinova i 16 analognih ulaznih pinova. 15 pinova može se koristiti kao PWM izlaz. PWM je (engl. Pulse Width Modulation) širinsko-impulsnmodulacija pomoću koje se dobivaju analogne vrijednosti pomoću digitalnih impulsa konstantne amplitude. Kod Arduino pinova koriste se za dobivanje vrijednosti izlaznih napona između 0 i 5V, dok su standardno korištene samo
granične vrijednosti. Također sadrži 4 UARTs\(^3\) porta (serijski portovi), 16 MHz kristalni oscillator, USB priključak, priključak za napajanje, ICSP\(^4\) zaglavlje i gumb za resetiranje.

Tablica 1. Tehničke specifikacije Arduino Mega 2560

<table>
<thead>
<tr>
<th>Specifikacija</th>
<th>Detalji</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikrokontroler</td>
<td>ATmega2560</td>
</tr>
<tr>
<td>Radni napon</td>
<td>5V</td>
</tr>
<tr>
<td>Ulazni napon (preporučeno)</td>
<td>7-12V</td>
</tr>
<tr>
<td>Ulazni napon (ograničenje)</td>
<td>6-20V</td>
</tr>
<tr>
<td>Digitalni ulazno/izlazni pinovi</td>
<td>54 (15 pinova za PWM izlaz)</td>
</tr>
<tr>
<td>Analogni ulazni pinovi</td>
<td>16</td>
</tr>
<tr>
<td>Istosmjerna struja po ulazno/izlaznom pinu</td>
<td>20 mA</td>
</tr>
<tr>
<td>Istosmjerna struja za 3.3V pin</td>
<td>50 mA</td>
</tr>
<tr>
<td>Flash memorija</td>
<td>256 KB (8 KB koristi bootloader)</td>
</tr>
<tr>
<td>SRAM</td>
<td>8 KB</td>
</tr>
<tr>
<td>EEPROM</td>
<td>4 KB</td>
</tr>
<tr>
<td>Brzina</td>
<td>16 MHz</td>
</tr>
<tr>
<td>LED_BUILTIN</td>
<td>13</td>
</tr>
<tr>
<td>Dužina</td>
<td>101.52 mm</td>
</tr>
<tr>
<td>Širina</td>
<td>53.3 mm</td>
</tr>
<tr>
<td>Težina</td>
<td>37 g</td>
</tr>
</tbody>
</table>

3 UART – engl. universal asynchronous receiver-transmitter, univerzalni asinkroni prijamnik-odašiljač
4 ICSP – engl. In Circuit Serial Programming, koristi se za programiranje mikrokontrolera

3.1.2. Arduino razvojno okruženje

Arduino IDE (engl. Integrated Drive Electronics) program je otvorenoga koda koji omogućuje jednostavno pisanje i učitavanje koda. Radi na Windows, Mac OS X i Linux operativnim sustavima. Razvojno okruženje pisano je u Java programskom jeziku i može se koristiti sa svakom inačicom Arduino pločice.
Postoje dvije opcije korištenja Arduino razvojnoga okruženja. Arduino Web Editor koristi se ukoliko u projektu postoji pouzdana internetska veza, a omogućuje automatsko spremanje, stvaranje sigurnosne kopije i mogućnost pristupa projektu s bilo kojega uređaja. Ukoliko ne postoji internetska veza, treba koristiti najnoviju verziju Arduino IDE na računalu.

3.2. Orange Pi Zero

Orange Pi Zero minijaturno je računalo otvorenog koda sadržano na jednoj kontrolnoj pločici. Najčešće se koristi u izgradnji robota, računala i servera.

Orange Pi Zero sastoji se od četverojezgrenog procesora Allwinner ARM Cortex-A7 i grafičkog procesora ARMv Mali 400 MP2 koji omogućuje pokretanje videozapisa visoke rezolucije, a čak je moguće pokrenuti i 4K video. Također sadrži SD karticu i čitač SD kartice, modul za bežični internet i USB 2.0 utor. Postoji mogućnost proširenja komponenti preko ostalih ulaza na pločici, a kompatibilni su čak i s nekim modulima Raspberry Pi uređaja.

Orange Pi Zero može se pokretati preko Android 4.4 verzije, Ubuntu i Debian operativnih sustava. Težak je 26 grama i dimenzije su mu 48mm x 46mm.

Tablica 2. Tehničke specifikacije Orange Pi Zero

<table>
<thead>
<tr>
<th>Specifikacija</th>
<th>Detalji</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>H2 Quad-core Cortex-A7 H.265/HEVC 1080P.</td>
</tr>
<tr>
<td>GPU</td>
<td>Mali400MP2 GPU @600MHz</td>
</tr>
<tr>
<td></td>
<td>Supports OpenGL ES 2.0</td>
</tr>
<tr>
<td>Memorijska kapaciteta</td>
<td>256MB/512MB DDR3 SDRAM</td>
</tr>
<tr>
<td>Podatkovna memorija</td>
<td>TF card (Max. 32GB)/ Spi Flash</td>
</tr>
<tr>
<td>Mrežni pristup</td>
<td>10/100M Ethernet RJ45 POE</td>
</tr>
<tr>
<td>WIFI</td>
<td>XR819, IEEE 802.11 b/g/n</td>
</tr>
<tr>
<td>Audio</td>
<td>MIC</td>
</tr>
<tr>
<td>Videoizlaz</td>
<td>Podržana vanjska ploča preko 13 pinova</td>
</tr>
<tr>
<td>Izvor napajanja</td>
<td>USB OTG</td>
</tr>
<tr>
<td>USB 2.0 portovi</td>
<td>USB 2.0 HOST, USB 2.0 OTG</td>
</tr>
</tbody>
</table>

5 4K video – 4K rezolucija videa
<table>
<thead>
<tr>
<th>Periferni uređaji niže razine</th>
<th>Zaglavlje s 26 pinova, kompatibilno s Raspberry Pi B+ zaglavlje s 13 pinova s 2x USB, IR pin, AUDIO(MIC, AV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
<td>Dioda za napajanje i statusna dioda</td>
</tr>
</tbody>
</table>

Slika 2. Orange Pi Zero i njegove komponente

IZVOR: http://www.orangepi.org/orangepizero/ (10.6.2018.)
3.3. Senzori

Senzor ili pretvornik uređaj je korišten za mjerenje fizikalnih veličina kao što su tlak, temperatura, osvjetljenje, ubrzanje, položaj i gibanje. Ulazni podaci pretvaraju se u određenu vrstu signala i na taj način se dobivaju povratne informacije. Ti signali mogu biti u obliku električnog signala, odnosno napona ili struje, digitalnog signala koji je pogodan za mikrokontrolere ili kao analogni signal koji se A/D pretvornicima pretvara u digitalnu vrijednost pogodnu za mikrokontrolere.

Senzori su sastavni dio većine elektroničkih uređaja za svakodnevno korištenje poput automobila, gumba koji reagiraju na dodir i slično, a također su neophodni dio automatizirane proizvodnje. Podjela senzora vrši se prema vrsti ulaznih podataka, načinu rada, složenosti, vrsti izlaznog signala i prema načinu prikaza signala.

Svaki senzor prima samo zadani tip mjerenog podatka iz okruženja, dok ostali faktori ne utječu na njegov rezultat, također sam senzor ne smije utjecati na krajnje informacije potrebne za korištenje. Većina senzora koristi funkciju linearnoga prijenosa (engl. linear transfer function). To je matematička funkcija zadužena za davanje odgovarajućeg izlaznog podatka za svaku dobivenu informaciju koja se može grafički prikazati kao ravna linija. Dobivene izlazne informacije nisu idealne zbog ograničenja senzora kao što su ograničen domet signala, brze promjene mjerenog svojstva, šumovi, osjetljivost senzora i devijacije kod funkcije linearnoga prijenosa.

![Slika 3. Grafički prikaz funkcije linearnoga prijenosa i njezinih devijacija](http://www.omron-ap.co.in/service_support/FAQ/FAQ01368/index.asp (10.6.2018.))
3.3.1. Temperaturni senzor TMP36

TMP36 je niskonaponski, precizan temperaturni senzor u Celzijusovoj skali. Na izlazu senzora dobiva se napon koji je linearno proporcionalan temperaturi u celzijusima. Nije mu potrebna kalibracija niti mu trebaju dodatne komponente za pružanje podataka preciznosti od ±1°C na +25°C i ±2°C u rasponu temperature od −40°C do +125°C. Za korištenje je potrebno napajanje u intervalu od 2.7 do 5.5 volti i isčitavanje izlaznoga napon na Vout pinu. Vrijednost izlaznoga napona preračunava se u temperaturu korištenjem konstantne proporcionalnosti izlaznoga napon i temperature od 10mV/°C.

![Slika 4. Temperaturni senzor TMP36](IZVOR: https://www.sparkfun.com/products/10988 (10.6.2018.))

3.4. Servomotori

Servomotori posebne su vrste motora korištene za stavljanje u pogon drugog mehanizma, a omogućuju precizno micanje dijelova nekog stroja ili uređaja. Srce servomotora mali je istosmjerni motor koji funkcionira zajedno s potenciometrom i kontrolnim sklopljvjem. Motor je povezan na kontrolni sustav preko zupčanika. Kod rotacije motora mijenja se otpor potenciometra preko kojeg kontrolno sklopovlje upravlja brzinom i pomakom motora.

Servomotori funkcioniraju na temelju kontrole proporcionalnosti što znači da se motor pokreće brzinom koja je potrebna za obavljanje određenoga zadatka. Ako se
Osovina motora ne nalazi na žaljenom položaju, motor se preusmjerava u pravilan smjer, a napajanje motora zaustavlja se dok osovina motora dođe na zadani položaj. Brzina motora uvijek je proporcionalna razlici između trenutnog i željenog položaja, stoga se brzina okretaja smanjuje što je bliže odredištu, a u obrnutom slučaju ubrza. Željeni položaj motora šalje se preko električnih impulsa kroz kontrolnu žicu.

Kontrola se vrši slanjem električnih impulsa varijabilne širine, odnosno pulsno širinskom modulacijom (skraćeno PWM). Određeni su minimalni i maksimalni puls te brzina ponavljanja. Servomotor se može okrenuti za 90 stupnjeva u lijevu ili desnu stranu omogućujući ukupno pokretanje od 180 stupnjeva. Neutralan je položaj motora na poziciji gdje se motoru omogućuje jednak potencijal za rotaciju u oba smjera, bilo da je riječ o pokretanju u smjeru kazaljke na satu ili obrnuto. Poziciju osovine određuje pulsno širinska modulacija i dužina impulsa dobivenih preko kontrolne žice. Impulsi se dobivaju svakih 20 milisekundi, a njihova dužina određuje koliko će se motor pokretati.

Postoje dvije vrste servomotora, AC i DC motori. AC motori mogu podnijeti jače udarne struje i većinom se koriste u industrijskim postrojenjima [8]. DC motori nemaju tu prednost pa su primjenjeniji za korištenje u manjim projektima.

6 AC motor – engl. alternating current, izmjenični motor ili motor za izmjenične struje
7 DC motor – engl. direct current, istosmjerni motor ili motor za istosmjernu struju
Slika 5. Grafički prikaz pulsno-širinske modulacije servomotora

3.4.1. Servomotor JX Servo PDI-918MG

JX Servo PDI-918MG analogni je servomotor malih dimenzija s metalnim zupčanicima. Najčešće se koristi kod fotouređaja, kamera i projekata koji sadrže zglobne mehanizme. Ovaj servomotor omogućuje odličnu brzinu, okretnu silu i izvrsno centriranje. Radi na naponima od 4.8 do 6.0 volta i ima brzinu vrtnje od 0.10 do 0.12 sekundi za okret od 60 stupnjeva. Težak je 12 grama i dimenzije su mu 22mm x 12mm x 21mm.
3.5. Web-kamera

Web-kamera je kamera koja prenosi snimke u stvarnom vremenu koristeći računalo i internetsku vezu. Kamera se većinom priklučuje preko USB \textit{(engl. Universal Serial Bus)} kabla ili je prethodno instalirana u sklopoplje računala, npr. kod laptopa. Najpopularnija je upotreba web-kamera kod korištenja videopoziva, videokonferencija i videonadzora. Međutim, one se koriste i u zdravstvu, astronomiji i kod profiliranja laserskih zraka. Glavni su dijelovi web-kamera leća, senzor slike i pomoćna elektronička oprema, a također mogu imati ugrađen i mikrofon.

3.5.1. Sweex WC070 web-kamera

Sweex WC070 je web-kamera s rezolucijom 1600x1200 i ručnim podešavanjem fokusa. Sadrži priključak USB 2.0 koji omogućuje veću brzinu prijenosa i kvalitetu slike. Ugrađeni je tip senzora slike CMOS \textit{(engl. complementary metal-oxide semiconductor)}.
3.6. LED diode

LED (engl. Light Emitting Diode) ili svjetleće diode poluvodički su elektronički elementi koji pretvaraju električni signal u svjetlost. LED diode emitiraju elektromagnetsko zračenje preko električnoga naboja. Prijelaz elektrona iz vodljivoga pojasa oslobađa energiju koja se djelomično očituje kao toplina, a djelomično kao zračenje. Boja emitiranoga svjetla varira od infracrvenog do ultraljubičastog spektra, ovisno o poluvodiču.

LED diode izrađuju se od galija, arsena i fosfora. Koriste se kao indikatori na komandnim i signalnim pločama raznih uređaja i strojeva, kao pokazivači na zaslonima kalkulatora, za signalnu rasvjetu ili za prijenos signala kod daljinskih upravljača. Također se primjenjuju i za prijenos podataka na kraće udaljenosti u optičkim komunikacijama.

3.7. Maketa

Maketa pametne kuće dizajnirana je u SketchUp programu za 3D skiciranje i modeliranje. Na taj način omogućeno je vizualizirane krajnjeg proizvoda u obliku arhitektonske skice makete.
Slika 8. Skica makete - pogled s prednje strane

IZVOR: autor

Slika 9. Skica makete – pogled sa stražnje strane

IZVOR: autor
4. Spajanje i komunikacija komponenata

U sljedećim poglavljima detaljno je opisan način spajanja komponenti popraćen shemama izrađenim u besplatnom alatu Fritzing. Također je priložen programski kod zaslužen za testiranje i komunikaciju među komponentama.

4.1. Spajanje komponenti s Arduino platformom

Sve komponente treba spojiti kako bi funkcionirala cjelina. Spojeni su Arduino Mega 2560 i temperaturni senzor TMP36, servomotori JX Servo PDI-918MG i LED diode.

4.1.1. Arduino Mega 2560 i TMP36

Temperaturni senzor TMP36 umjesto otpornika osjetljivog na temperaturu koristi svojstva dioda. Prigodom promjena temperature kod dioda mijenja se i napon. Senzor tada mjeri najmanje promjene i na temelju njih kao izlazni podatak prenosi analogni napon između 0 i 1.75VDC. Dobiveni analogni napon preračunava se u temperaturu.

Prvi je korak postavljanje senzora na eksperimentalnu ploču. Nakon toga se spajaju pinovi sljedećim redoslijedom:

- Arduino 5VDC pin i pin 1 na senzoru
- Arduino GND pin i pin 3 na senzoru
- Arduino pin za analogni ulaz i pin 2 na senzoru.
4.1.2. Arduino Mega 2560 i JX Servo PDI-918MG

Servomotori se spajaju preko triju žica: žice za napon, uzemljenje i signal. Žica za napon crvene je boje i spaja se na Arduino 5V pin. Žica za uzemljenje crne ili smeđe boje i spaja se na Arduino GND pin. Žica za signal može biti žute, narančaste ili bijele boje i spaja se na Arduino digitalni PWM pin 9.

Potenciometar se priključuje na način da su 2 vanjska pina spojena na napajanje (+5V) i uzemljenje, a srednji pin spaja se na analogni ulaz 0 na Arduino ploči.
Slika 11. Shematski prikaz spajanja servomotora

IZVOR: autor

4.1.3. Arduino Mega 2560 i LED diode

Kod spajanja LED diode treba spojiti jedan kraj otpornika na digitalni pin odgovarajući za LED_BUILTIN konstantu. Dulja nožica LED diode (pozitivna nožica, anoda) spaja se na drugi kraj otpornika. Kraća nožica LED diode (negativna nožica, katoda) spaja se na GND pin. Korišten je otpornik od 220 Ω jer je LED dioda komponenta kojoj treba ograničiti struju, a ne učini li se to, kroz nju će poteći prevelika struja koja će ju uništit.
4.1.4. Programski kod

Kako bi se omogućila komunikacija komponenti, treba napisati programski kod. Kod uključuje upravljanje servomotorima, temperaturnim senzorom i svjetlima (LED diode).

U funkciji loop() čitaju se serijski zaprimljene vrijednosti. Ovisno o dobivenom podatku pozivaju se funkcije za pomicanje servomotora, paljenje LED dioda i očitavanje temperature.

```
#include <Servo.h>

//definiranje pinova za servo motore
#define PROZORI_L 11
#define PROZORI_R 10
#define VRATA 9
```
#define TEMP_SENZOR 7
#define SVIJETLO 23

Servo prozoriL;
Servo prozoriR;
Servo vrata;

int temp = 0;

void setup() {
 // inicijaliziranje serijalne komunikacije:
 Serial.begin(9600);
 prozoriL.attach(PROZORI_L);
 prozoriR.attach(PROZORI_R);
 vrata.attach(VRATA);
 prozoriL.write(85);
 prozoriR.write(135);
 vrata.write(100);
}

void loop() {
 // čitanje zaprimljenih vrijednosti:
 if (Serial.available() > 0) {
 int inByte = Serial.read();
 switch (inByte) {
 case 'a':
 func_vrata(true);
 break;
 case 'b':
 func_vrata(false);
 break;
 case 'c':
 break;
 }
 }
}
void func_prozori(bool status){
 if(status){
 int tempR = 85;
 int tempL = 135;
 for(int i = 0; i < 50; i++){
 prozoriL.write(tempL-i);
 prozoriR.write(tempR+i);
 delay(20);
 }
 }
 else
 {
 int tempR = 135;
 }
}
func_prozori(true);
break;
case 'd':
 func_prozori(false);
 break;
case 'e':
 digitalWrite(SVIJETLO, HIGH);
 break;
case 'f':
 digitalWrite(SVIJETLO, LOW);
 break;
case 'g':
 temp = ((5.0 * analogRead(TEMP_SENZOR) * 100.0) / 1024)+3;
 Serial.println(temp);
 break;
}
4.1.5. Testiranje rada komponenti

Nakon uspješnog spajanja komponenata i implementiranja programskoga koda za njihov rad obavljena su testiranja kako bi se utvrdilo pravilno i neometano funkcioniranje sustava.

```
int tempL = 85;
    for(int i = 0; i < 50; i++){
        prozoriL.write(tempL+i);
        prozoriR.write(tempR-i);
        delay(20);
    }
}

void func_vrata(bool status){
    if(status){
        for(int i = 50; i < 100; i++){
            vrata.write(i);
            delay(20);
        }
    }
    else{
        for(int i = 100; i > 50; i--){
            vrata.write(i);
            delay(20);
        }
    }
}
```
Slika 13. Spojevi na Arduino Mega 2560
IZVOR: autor

Slika 14. Uspješno spojen temperaturni senzor
IZVOR: autor

Slika 15. LED diode i spojevi
IZVOR: autor
4.2. Spajanje Arduino platforme i Orange Pi Zero

Arduino i Orange Pi Zero spojeni su preko USB porta. Arduino šalje podatke o temperaturi web-serveru, opisanom u sljedećem poglavlju, u intervalu od jedne sekunde. Također prima podatke koje šalje server na temelju kojih izvršava određenu radnju.

Slika 16. Arduino platforma spojena s Orange Pi Zero

IZVOR: autor

4.2.1. Konfiguracija Orange Pi Zero

Orange Pi Zero zahtijeva instalaciju Linux operativnog sustava preko SD kartice. Operativni se sustav za instalaciju priprema koristeći alat nazvan Etcher\(^8\). Nakon uključivanja Orange Pi Zero prikazuje se prozor za upis korisničkog imena ("root") i lozinke ("1234"). Lozinka je promijenjena u "SmartHome". Za ažuriranje Linuxa koriste se sljedeće naredbe:

```
Sudo apt-get update
Sudo apt-get upgrade
```

\(^8\) Etcher – besplatan alat otvorenog izvora (engl. open source) koji se koristi za snimanje slikovnih datoteka kao što su .iso i .img
Na Orange Pi Zero spojeni su usmjerivač i kamera. Za kameru treba instalirati program kako bi mogla pravilno funkcionirati. Nakon instalacije treba izvršiti određene promjene u .config datoteci:

1. Vrijednost 'deamon' mora biti ON
2. Postavlja se 'framerate' na vrijednost između 1000 i 1500
3. 'Stream_port' treba biti 8081
4. 'Stream_quality' treba biti 100
5. Mijenja se 'Stream_localhost' vrijednost na OFF
6. Mijenja se 'webcontrol_localhost' na OFF
7. Postavlja se 'quality' na 100
8. Postavlja se 'width' na 640 i 'height' na 480
9. Postavlja se 'post_capture' na 5.
10. Izlazi se iz datoteke, pokreće se naredba: sudo nano/etc/default/motion
11. Postavlja se 'start_motion_daemon' na yes.

Nakon opisanih koraka promjene se spremaju i program se mora ponovno pokrenuti naredbom: 'sudo service motion restart'.

Kako bi se omogućila daljnja komunikacija, koristi se Node.js. Node.js je cross-platforma otvorenoga koda koja na serveru izvršava JavaScript naredbe.

Instalacija Node.js-a obavlja se preko sljedećih dviju naredba:

curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -
sudo apt-get install -y nodejs

Za instalaciju Node.js dodataka koriste se sljedeće naredbe:

npm install socket.io -save
npm install --save-dev serialport
4.2.2. Node.js server


```javascript
var http = require('http').createServer(handler); // zahtjev za http server, kreiraj server s funkcijom handler()
var fs = require('fs'); // zahtjev za filesystem modul
var io = require('socket.io')(http); // zahtjev za socket.io modul
var SerialPort = require("serialport");
var arduinoPort = "/dev/ttyUSB0";
var port = new SerialPort(arduinoPort, {baudRate: 9600});
```
var vrataValue = 1;
var prozoriValue = 1;
var svijetloValue = 0;
var temperaturaValue = 0;

http.listen(8000); // osluškuj port 8080

function handler (req, res) { // kreiraj server
 fs.readFile(__dirname + '/front/index.html', function(err, data) { // čitaj datoteku index.html
 if (err) {
 res.writeHead(404, {'Content-Type': 'text/html'});
 // prikaži 404 uz grešku
 return res.end("404 Not Found");
 }
 res.writeHead(200, {'Content-Type': 'text/html'}); // ispis HTML-a
 res.write(data);
 return res.end();
 });
}

io.on('connection', function (socket) {// WebSocket Connection
 setInterval(() => {
 socket.emit('vrata', vrataValue);
 socket.emit('prozori', prozoriValue);
 socket.emit('svijetlo', svijetloValue);
 port.write('g');
 var x = port.read();
 if(x!=null){
 socket.emit('temperatura','"Temperatura =" + x.toString('utf8') + "°C");
 }
 }, 1000);
}
socket.on('vrata', function(data) { // dobivanje podataka/statusa od klijenta
 vrataValue = data;
 if(data == 1){
 port.write('a');
 }
 else{
 port.write('b');
 }
});

socket.on('prozori', function(data) {
 prozoriValue = data;
 if(data == 1){
 port.write('c');
 }
 else{
 port.write('d');
 }
});

socket.on('svijetlo', function(data) {
 svijetloValue = data;
 if(data == 1){
 port.write('e');
 }
 else{
 port.write('f');
 }
});
4.3. Web-aplikacija

Za upravljanje izrađenim modelom treba izraditi web-aplikaciju na kojoj će biti omogućeno otvaranje i zatvaranje vrata i prozora, paljenje i gašenje svjetla i prikaz temperature. Aplikacija se pokreće na lokalnoj adresi i pisana je u HTML kodu:

```html
<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1">
<style>
.switch {
  position: relative;
  display: inline-block;
  width: 60px;
  height: 34px;
}
.switch input {display:none;}

.slider {
  position: absolute;
  cursor: pointer;
  top: 0;
  left: 0;
  right: 0;
  bottom: 0;
  background-color: #ccc;
  -webkit-transition: .4s;
  transition: .4s;
}
.slider:before {
```
```
Matej Javorski

Pametna kuća s Arduino platformom
Vrata

Prozori

Svijetlo

Temperatura = 0

window.addEventListener("load", function(){
    var temp = document.getElementById("vrata");
    temp.addEventListener("change", function() {
        // dodaj event listener za promjenu vrijednosti
    });
});
socket.emit("vrata", Number(this.checked)); // pošalji status gumba serveru kao 1 ili 0

});

var temp = document.getElementById("prozori");
temp.addEventListener("change", function() {
    socket.emit("prozori", Number(this.checked));
});

var temp = document.getElementById("svijetlo");
temp.addEventListener("change", function() {
    socket.emit("svijetlo", Number(this.checked));
});

socket.on('vrata', function (data) { // dohvati status gumba od klijenta
    document.getElementById("vrata").checked = data; // promijeni checkbox prema gumbu na Raspberry Pi
});
socket.on('prozori', function (data) {
    document.getElementById("prozori").checked = data;
});
socket.on('svijetlo', function (data) {
    document.getElementById("svijetlo").checked = data;
});
socket.on('temperatura', function (data) {
    document.getElementById("temperatura").innerHTML = data;
});
5. Rezultati rada

Nakon što su sve komponente zasebno spojene i testirane, one su spojene u jednu cjelinu kako bi se moglo upravljati svim opisanim uređajima i funkcijama. Uređaji su spojeni na eksperimentalnoj ploči i dodatno su testirani. U ovome sklopljenju nalaze se Arduino Mega 2560, temperaturni senzor TMP36, servomotori JX servo PDI-9180MG i LED diode. Sve je spojeno s Orange Pi Zero koji je povezan s usmjerivačem i web-kamerom Sweex WC070.

Slika 18. Shematski prikaz spojeva svih komponenti

IZVOR: autor

Nakon što su sve komponente ispravno spojene i nakon što je napisan programski kod za komunikaciju uređaja, sve zajedno spojeno je na izradenu maketu pametne kućice koja je dizajnirana prema prethodno skiciranom dizajnu u SketchUp programu.
Slika 19. Prikaz dovršene makete s vanjske strane
IZVOR: autor

Slika 20. Prikaz dovršene makete i komponenata
IZVOR: autor
Svim komponentama spojenima na maketu upravlja se preko web-aplikacije. Ona korisnicima omogućuje otvaranje i zatvaranje prozora i vrata na maketi, paljenje i gašenje svjetla, prikaz temperature te videoprikaz makete pametne kuće.

Slika 21. Prikaz sučelja web-aplikacije

IZVOR: autor
6. Zaključak

U današnje vrijeme velika je potražnja za automatiziranjem kućnih sustava. Bilo da je riječ o video nadzoru ili upravljanju određenim uređajima u kući, komercijalna rješenja mogu biti jako skupa i većinom se ne mogu nadograditi. Zbog toga je Arduino platforma vrlo povoljno rješenje.

Arduino platforma kompatibilna je s mnogim uređajima i sustavima, koristi programe otvorenoga pristupa te postoji mogućnost nadogradnje raznim uređajima. Dostupna je široj populaciji zbog relativno niske cijene i jednostavnosti upotrebe. Može se koristiti u različite svrhe kao što su integracija zaštitnoga sustava, potpuna kontrola nad rasvjetom, upravljanje videosustavima i audiosustavima, upravljanje grijanjem, hlađenjem i ostalim uređajima.

Zbog navedenih je pogodnosti Arduino sve popularniji u današnjoj tehnološki obilježenoj svakodnevni.
7. Popis literature:

4) Arduino IDE. https://www.arduino.cc/en/Main/Software (5.5.2018.)
8. Popis slika

Slika 1. Arduino Mega 2560 razvojna pločica .......................................................... 6
Slika 2. Orange Pi Zero i njegove komponente ......................................................... 10
Slika 3. Grafički prikaz funkcije linearnoga prijenosa i njezinih devijacija .......... 11
Slika 4. Temperaturni senzor TMP36 ......................................................................... 12
Slika 5. Grafički prikaz pulsno širinske modulacije servomotora ......................... 14
Slika 6. JX Servo PDI-918MG .................................................................................. 15
Slika 7. Sweex WC070 web-kamera .......................................................................... 16
Slika 8. Skica makete - pogled s prednje strane ...................................................... 17
Slika 9. Skica makete – pogled sa stražnje strane .................................................... 17
Slika 10. Shematski prikaz spajanja TMP36 ............................................................... 19
Slika 11. Shematski prikaz spajanja servomotora ..................................................... 20
Slika 12. Shematski prikaz spajanja LED diode ........................................................ 21
Slika 13. Spojevi na Arduino Mega 2560 ................................................................. 25
Slika 14. Uspješno spojen temperaturni senzor ....................................................... 25
Slika 15. LED diode i spojevi .................................................................................... 25
Slika 16. Arduino platforma spojena s Orange Pi Zero ........................................... 26
Slika 17. Orange Pi Zero sučelje ............................................................................. 28
Slika 18. Shematski prikaz spojeva svih komponenti ................................................ 35
Slika 19. Prikaz dovršene makete s vanjske strane .................................................. 36
Slika 20. Prikaz dovršene makete i komponenata ...................................................... 36
Slika 21. Prikaz sučelja web-aplikacije .................................................................... 37